

Objetivos

● Recordar clase pasada
● Concluir exposición sobre listas y tuplas
● Comenzar con listas de listas (listas anidadas)
● Pequeño simulacro

Operaciones básicas

A = [1, 2.0, "iii", "cuatro"] # lista de 4 elementos
B = [] # lista sin elementos
C = [1] # lista de un elemento
print(len(A)) # imprime el largo de A, 4

D = A + [5, 6.0, 'vii’] # concatenacion de listas
print(len(D)) # imprime el largo de D, 7

print(‘iii’ in A) # True, es elemento de A
print(1 not in A) # False, es elemento de A

print(D.index('vii’)) # 6, ya que D[6] es ‘vii’
print(D.count('xii’)) # 0, pues ‘xii’ not in D

¿¿Concatenar listas con tuplas??

● Conversión de tipos: así como a=int(b) convierte b en un int
(sea b un int, float, str), podemos convertir una secuencia de
un tipo en otra secuencia de otro tipo:

A = [1, 2.0, "iii", "cuatro"] # una lista
B = (5, 6.0, 'vii', 'eight') # una tupla

L = A + list(B) # concatena A con B-como-lista
M = tuple(A) + B # concatena A-como-tupla con B

X = list(A) + list(A) # A ya era lista, se clona

Acceder a elementos según su índice

 x = [True, False, 10, 20, -5.5, 'yup', 0, 0, 'nope']
Python nos deja acceder a los elementos de una lista de manera sencilla

● Basta indicar su índice o posición en la lista
● Funciona igual que con strings y tuplas

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● len(x) -->
● x[1] -->
● x[6] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● len(x) --> 9
● x[1] --> False
● x[6] --> 0

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● x[-4] -->
● x[-1] -->
● x[-len(x)] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● x[-4] --> 'yup'
● x[-1] --> 'nope'
● x[-len(x)] --> True

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[0 : 3] -->
● x[5 : 9] -->
● x[-7:-2] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[0 : 3] --> [True, False, 10]
● x[5 : 9] --> ['yup', 0, 0, 'nope']
● x[-7:-2] --> [10, 20, -5.5, 'yup', 0]

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[4 :-4] -->
● x[-3:] -->
● x[: 3] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[4 :-4] --> [-5.5]
● x[-3:] --> [0, 0, 'nope']
● x[: 3] --> [True, False, 10]

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Recorrer con y sin índices
● Lo siguiente está escrito para tuplas, pero es igual para índices

T = (5, 10, 15, 20, 25)

podemos recorrer directamente
for x in T:
 print('ahora x vale', x)

podemos recorrer usando indices
for i in range(len(T)):
 print(i, '--->', T[i])

ahora x vale 5
ahora x vale 10
ahora x vale 15
ahora x vale 20
ahora x vale 25
0 ---> 5
1 ---> 10
2 ---> 15
3 ---> 20
4 ---> 25

Chequeando el contenido
in, not in, count, index,

==, !=, <, <=, >, >=

Podemos detectar elementos (in)

● La instrucción in detecta
pertenencia

● in entrega True/False
(booleano)

● Similarmente, está la
instrucción not in, que es la
negación de in

>>> L = [10,0.5,'txt']
>>> 10 in L
True
>>> 'txt' in L
True
>>> 0 in L
False
>>> 10 not in L
False
>>> 'txt' not in L
False
>>> 0 not in L
True

No podemos detectar sublistas (in)

● Una sublista es una porción
(rebanada, slice) de una lista
– Ej. [10,5] es sublista de

[1,10,5,8]

● La instrucción in no detecta
sublistas
– ...ni subtuplas

>>> L = [10,0.5,'txt']

>>> [10,0.5] in L
False
>>> [10,0.5] == L[:2]
True

>>> [10] in L
False
>>> [10] == L[:1]
True

Contar elementos (count)

x.count(u)

● Entrega la cantidad de veces
que aparece el elemento u
dentro de x

● Si el elemento no fue
encontrado, entrega 0

>>> x = [5,-5,0,0.5,"python",0,0]
>>> x.count(0)
3
>>> x.count(5)
1
>>> x.count(-5)
1
>>> x.count("python")
1
>>> x.count(10)
0
>>> x.count("PYTHON")
0

Encontrar elementos (index)

x.index(u)

● Encuentra el primer índice en
el cual se encuentra el
elemento u, o falla

● No hay find en list, tuple

>>> x = [5,-5,0,0.5,"python",0,0]
>>> x.index(0)
2
>>> x.index(5)
0
>>> x.index(-5)
1
>>> x.index("python")
4

>>> x.index(10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: list.index(x): x not in list
>>> x.index("PYTHON")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: list.index(x): x not in list

Comparación entre listas/tuplas
● Comparación se hace de izquierda a derecha.

A = (1, 2, 3)
B = (1, 2, 3, 0)
C = (1, 2, 3, -1)
D = (3, 0, 0, 0)

print(A == B) # False, B tiene un elemento extra por sobre A
print(A < B) # True, A es como B, pero sin el último elemento
print(B < C) # False, aunque B[:3]==C[:3], ocurre B[3] > C[3]
print(C <= D) # True, C[0] < D[0], luego se resuelve el <=

Mutación de listas

Lo siguiente no aplica a tuplas

Asignar elementos (=)

L[i] = u

● Asigna el valor u a la posición
(índice) i de L

>>> a = [1,2,3]

>>> a[0] = -1
>>> print(a)
[-1, 2, 3]

>>> a[0] = 1
>>> print(a)
[1, 2, 3]

>>> b = a
>>> b[-1] = 1000
>>> print(b)
[1, 2, 1000]
>>> print(a)
[1, 2, 1000]

Anexar elementos (append)

L.append(u)

● Anexa el valor u al final de la
lista L, como un elemento más

>>> a = [1,2,3]

>>> a.append(-1)
>>> print(a)
[1, 2, 3, -1]

>>> a.append([0,5])
>>> print(a)
[1, 2, 3, -1, [0, 5]]

>>> b = a
>>> b.append("!!!")
>>> print(b)
[1, 2, 3, -1, [0, 5], '!!!']
>>> print(a)
[1, 2, 3, -1, [0, 5], '!!!']

Insertar elementos (insert)

L.insert(i, u)

● Inserta el valor u en el índice i
de la lista L, desplazando los
índices de los elementos
posteriores en la lista en +1
lugar

>>> L = [0,1,2,3,4]
>>> print(L)
[0, 1, 2, 3, 4]

>>> L.insert(0,"ari")
>>> print(L)
['ari', 0, 1, 2, 3, 4]

>>> L.insert(3,"gato")
>>> print(L)
['ari', 0, 1, 'gato', 2, 3, 4]

>>> L.insert(-1,"miau")
>>> print(L)
['ari',0, 1,'gato',2, 3,'miau',
4]

Remover elementos (remove)

L.remove(u)

● Remueve la primera aparición
del valor u en la lista L

● Si u no está en L, arroja una
excepción alegando que el
valor no está en la lista

>>> a = [1,1,2,2,3,3]

>>> a.remove(1)
>>> print(a)
[1, 2, 2, 3, 3]

>>> a.remove(3)
>>> print(a)
[1, 2, 2, 3]

>>> a.remove(100)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list

Remover elementos (pop)

L.pop(i)

● Remueve el elemento en el
índice i y lo retorna

● Si i no se entrega, se asume
i = -1 (remover el último
elemento)

● Los índices de los elementos
posteriores cambian en -1

>>> L = ['cat', 'dog', 'bird']
>>> print(L)
['cat', 'dog', 'bird']

>>> a = L.pop(0)
>>> print(a)
cat
>>> print(L)
['dog', 'bird']

>>> a = L.pop(-1)
>>> print(a)
bird
>>> print(L)
['dog']

Extender una lista con otra (extend)

L.extend(M)

● Toma los elementos de M y
los anexa al final de L

● M puede ser lista, tupla, string,
u otra secuencia de valores
– Si M es lista o tupla: se

anexan los elementos a L
– Si M es string: se anexa cada

caracter como elemento a L

>>> L = [1,2]
>>> print(L)
[1, 2]

>>> L.extend([3,4])
>>> print(L)
[1, 2, 3, 4]

>>> L.extend((5,6))
>>> print(L)
[1, 2, 3, 4, 5, 6]

>>> L.extend("78")
>>> print(L)
[1, 2, 3, 4, 5, 6, '7', '8']

Ejemplo

Listas de Listas
Clase 31

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) ==
● len(L[0]) ==
● len(L[1]) ==
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) ==
● len(L[1]) ==
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) ==
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) == 4
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) == 4
● L[0] == [1, 5, 2]
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) == 4
● L[0] == [1, 5, 2]
● L[1][-1] == 1

● El código anterior define una
lista de listas

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L
● Consideremos la lista apuntada

por la variable L (a la izquierda)

● ¿Cómo cambiamos ese 7 por
un 9?

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1]

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1]
L = [[1, 5, 2],

[0, 0, 7, 1],
[3, 2, 1]]

L[1][2]

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1]
L = [[1, 5, 2],

[0, 0, 7, 1],
[3, 2, 1]]

L[1][2]

L = [[1, 5, 2],
[0, 0, 9, 1],
[3, 2, 1]]

L[1][2] = 9

